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ABSTRACT

This report shows systematic techniques for handling or ckaging*)\
of n-tuples of n-tuples of position, velocity)and acceleration vectors.

large systems of vectors cast into s -vactor representations lecd/ in
a natural wvay / to matrix Riccati tions.
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The scalar Riccati Equation ar given by Ince (Reference 1) is
y+ay2 +by + c =0 (1-1)

vhere y 15 a scalar-valued varisble of the scalar argument (varisble)
time, a, b, and ¢ are constants or time varying coefficients.

The matrix Riccati Equation as given by levine (Reference 2) is
T+B Y+YBp +YAY +C = [0] (1-2)

where Y (t) is a matrix-valued function of ‘a scalar argument (single variable
tiie) and A, B;, Bp and C are constant or time-varying coefficient-matrices.
Kalman, Bellman, Pontrjagin and other researchers working in the area
of mathematical prograrming and optimization frequently refer to the matrix
Riccati Equation. The Adetermination of an optimal econtrol in feedback control
;:heory or of an optimal filter in estimation and prediction theory invokes
a consideration of the Riccati Equation.
This report shows how numerously one cen obtain matrix Riccati relations
in vector dynamics. A geometrical insight into the relations described by the

matrices is presented.



Section I. Some cts of Generalized cal tems

This section considers systu_-‘ qt veotors avrd their first and second
derivatives. Representations of the vectors independent of their coordinates
in bases are presented parallel to matrices of their éoordj,nn,tea relative to
movirg bases., Matrdées of invariant inner-products of velocity vectors,
representing a matrix of scalars of themotion of a system of vectors,
motivates the notion of generalized energies. A scalar invariant of the
system is generated as the trace of the matrix and has its analog in total
system energy.

Many other classical mechanics notions are presented in a unifying
systematic manner based on fundamentals of mathematical transformation theory.

Consider a vector X in real n-space with coordinates in a fixed basis
< and 1n two other arbitrary bases y and <Z, that is

X = rx>-<i&§i<§x> . S ‘1)

The cocordinates of the.<§ basis in the<? space is

<F=<F¥ . (2)

and similiarly

< =<F ‘ | G)

The system of 2n + 1 vectors

8 = (X, <3'-: <-z') = (X, Y1, Y2, ¥s» 21, Zp, 2s) ()

in n-space with no constraints represents n(2n + 1) independent coordinates
that 18 2n® + n scalars (field elements) epecify the configuration of the
seven vectors. Kach second-derivative vector (e.g. X in n-space requires

2 n integrators (with their initial conditions) to obtain the vector.

2



Hence the chnanical propagation of the system of vectors
0 .. .0 .. .. " .. [ 13
<ﬁ - ﬁ.<v.<z) = (X, Y1, Y2» Y35 %1, %2, Zs) (5)
raquires 2 x n x 7 = 14 n integrators. In three space one has 42 integrators

in a computer mechanizatior of the system. The time derivatives of (5) are
wvith respect to the fixed background basis, that is

<f =<3 . | (6)

Using (2) and (3) in (1), one obtains

> =yt > a2 22> (7
hence for ocomplete flexibility in mapping between bases, the mfomtion
matrices Y and Z, must be obtained. These trensfovmations as well as &
number of other relstions are obtained as solutions of matrix Riceati type
equations.

Before bogging down in the detailed maze of matrices of coordinates,
let us glimpse at the overall second-derivative picture of the system of
vectors. Note that above we state matrices of coordinates, This handling
of large packsges of coordinates (matrices) alleviates the tediousness of
the standard classical treatise of mechanics systems of particles wherein
one deals with a maze of super and subscripts which rapidly swamp the
meaning of the physical picture.

A. Matrices of Invariant Representations
The relative configuration of the system of vectors may be
described by a matrix of inner-products (independent of coordinates) by



or

%8 - ;u; Xe y

G <G <D = e

=<z

> <3
D> <

vhere geametrically one has the conventional notion of

%.% =[5 [5]

> < -

Y172 Y122

Ye'%)y 72'72

Fats  Fole

One may now write (9) as

'

Qes =

@y Qz-

A
¢

x +<F =

Y1°2s

¥a%s

¥sZs

= Qe ,

The first derivative dynamics of the system is descrided by

Qs = 5> <5+ >3

or

(8)

(9)

(10)

()

(12)

(13)

(1)
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Kote that the time derivative terms of (15) are coordinete free. In
later sections the matrices of coordinates will enter the picture.

The second derivative dynamics of the system is described by
w10 <3+20<5+:><5 (26)
Clearly one detects the notion of total system Rinetic energy or
rather a matrix of some of the scalars of the motion in the matrix of
inner-products 'i'> . <';', that is
G G
D<idiSEF DG o<l an
Di DS DG
The total "energy" is the trace ot/ (17), that is
e =55 > trace 5>+ <3 / (18)
or '
<';'-';' = E-i + trace ';7> ) <}' + trace §> <'.E
e -i-i + 3.;-1.!> +<i-.é> . | (19)
The trace of a matrix is an invariant (independent of bases.)

The analogs of the classical concepts of energy, power, etc,*‘or a

system of vectors may also be formulated and handled at the matrix of

vectors level. Ilator reports will present these generalized systems of

vectnrs in generalized ccordinates in a Hamiltonian framework.



B. Matrices of Matrices of Coordinates

Consider the matrix of coordinates of the < z vectors in the<§

basis, that is by (2) and (3)

<z'-<§¥'lz-<}‘~r. | (20)

The system of vectors <§ is now

<E = (%, §,<§ T) (21)
%% <G =3t
DDy @)
'r';> X TH, T T

L .
The matrix of scalars T of (20) may be evaluated as a matrix of inner-

and

products by projecting the <'i' vectore onto the dual vectors 3r> , that is

%>'<; - [371 33] '_§<3" TeT, (23)

since by definition of duals or reciprocals

§-<? -1. | . (2h)

It is shown in later sections that the matrix T satisfies a matrix
Riccati differential equation.

C. The Alias - Alibi Aspect

In algebraic transformation theory one is confronted with the vector

matrix equation

\> - A> (25)



vhich has two interpretations;

() \> a.ud\> are two different vectors.

(2) 'u> and 1> are the same vectors in different coordinate
systems (bases). Clearly (25) is the same form as (7).

Halmos*points out that the theory of changing bases is coextensive
with the theory of invertible linear transformations. He states that an
invertibls linear transformation is an automorphism, whereby an auto-
morphism means an isomorphism of a vector space with itself., Halmos
points out that conversely, every automorphism is an invertible linear
transformation,

The study of the properties of .a linear transformation A on a vector
u> and of the structure of the transformation A necessitates that one study
the effect of A on n-linearly independent vectors 1> i, 1> 2) eee t> n .

For example, in the throe space three l;mar:ly independent vectors
u>1 in the dowain space under A map to three vectors in the Range

space with respect to A as

w S, W 3]-[Au 1, AuD 2, A 3] (26)
_. [ Do i
or
WnrAU (27)
Since U are linearly independent their matrix of coordinates U is an
invertible matrix, hence
-1
A=sWU . (28)

*Halmos, P. 86.



Clearly, then in the study of the dynamics of the single vector X,
one must study themotion of n linearly indeperdent vectors

<& = G % -or ) (29)

In differential equation theory this is equivalent to obtaining n
linearly independent solutions.

For example, if the vector x is kmown to propagate under a linear
law A(t) vhere A is a

> = At | - (30)

function of time, one must consider the extended system of (i) as

< - (<< <D (1)

to obtain the dynamics of X in two arbitrary sste of moving bases <y and
<3. In other words, one must consider m-linearly independent solution
vectors.

This paper will not go into the study of the analytical properties
of the systems of dynamical vectors of (31).



Section II. Vector System Equations of & tion

This report is limited to foimulation of the equation of motion for

the system of (I-4) for computer mechanization and to yeild geometrical
insight into the geometrical dynamics.
A, First Derivative Vector lhtrix,nela_tions’
The vector X by .(Ll) in thetvo 'a.riittan moving bases is

e GG - W
G DG DG D ED. @

Since <y is a basis, the three velde_:ity vectors <'i may be exp_essed
in the <§ basis, that is a matrix of scalars exist such that

SALSAK | G)

and similarly for the <t vectors

G -<Ev ) | ()

By (I-2)
<i -<? Y (5)
and
=1
<T a{yY (6)
hence 4

G <21 | . (7)



since by (I-6)
<z <5 | @)
hence
. _ 1. . . 0
<F<Frax . (9)
By (3) and (‘9)

1.
YV, (20)

Y
and similarly for the basis< %, that is
_o_ -l .
, <zu<;z Z =<2V (2) (11)

By (10) and (11)

Y=YV (y) (12)
22V (z) . (23)

The two first order ma.rix differential equations above are special

cases of the Riccati matrix equation shown in(1-2).
By (1-20)

-1
<=r={3Y 2 (%)

hence also
Za<yr+<FT | (25)

10



o i e e e, b A bt NN

Using (9) and (11) in (15)

Gr-<Grv) +<Fvpr (26)

or

TV (z) 4V (y) T | (a7)

which 1s also a matrix Riccati equation as seen by (i-2).

One may derive (17) directly from the matrix réhtions of (14), that is

-1
T=Y 2 (18)
and
' “1. -l .
T= |aY Z+Y Z . (19)
at
now
-1
Y Y=1I (20)
hence
-1 -l . ’
ar (X) +Y Y= [0] (21)
at
therefore
-1 «l, =1
a(y ) =Y Y¥Y (22)
at .

T=Y YY Z+Y 2 (23)



Using the identity

-1

22 =1 o . (24)
(23) becomes

° -1. -1 -1 -1

T=Y Y(X 2)+( 2)y2 2z (25)
Using (18) in (25)

. 'l . -1 .

TeY YT+T72Z 2 (e6)

Clearly if Y and Z satisfy
Y=YV (y) (27)

and

2 =2V (s) (28)
then (26) may be written as

TV () T+TV (2) (29)

which agrees with (17).
The latter derivation is mechanical manipulation and does not convey
the direct geometrical clarity as does the first derivation leading to (17).
Consider the metric-matrix of the y basis My, that is

My =7 T =YW X 30)



The derivative of (30) is
My =¥ > T T <5 . L (31)
By (3)

SEXSALS S (32)

and transposing ) . . . ) .

hence using (32) and (33) in {31) yields

{4” =V /ly) Mgy + Mgy V (3) | (34)

vhich once again is a special case of the Matrix Riccati equation (1-2).
A repetition of the same argumet for the dynamics of the 7z

basis yields

My, = V/(z) Mgy + Mgz V (2) |. (35)

Consider next the matrix of inner-products between the bases
<'§ and < z, that is
Q =y > <TuMyT (36)

The matrix Q specifies the relative orientations of the vectors.

The derivative of (36) is

Q=TT (7)

13



Using (33) and (11) in (37)
L=V T AT () (38)

and by (36)

QeV(y) Q+QV () - (39)

B. Second Derivaiive Vector-Matrix Reslations

The vector X in the <?,<§ and the(‘: bases by (I-1) is
3 o F > KT 0> < 1> @
and the velocity vector is |

eI D> G+ GD (s1)

>G> ()

The acceleration vector is o

DG G DGT> @)

-<ix>+2<;;> +<Ez¢> ()

U



Section III. Trajectory of a Vector X and one Arbit Time V Basis
The first case will consider the simple system of four arbitrary
vectors with the only condition that the three voctors<§ fofm a basis,

that 1s

<o = @& <KH) = @ (8), Falt), Falt), Tale))  (45)
where

%= T LD =<5 9> | (46)
and

<F=Fr (t) . (47)

In three space we have a system of four vectors each having three
independent variables or a total of twelve arbitrary coordinates to
specify the geometrical configaration of the system of vectors.

Clearly, at the velocity level we need twelve integrations and

3 -3 [;:? , i(;:)ﬁ] -5 (48)

3xh

twelve initial conditions or constants of the motion as shown by (48) where
the components of the 3 x 4 matrix are all in the "fixed'bases <'f.
In most real-life problems the parameters of the system and the

constents of the system occur most naturally in moving bases.

15



Clearly, the second derivative vectors of the system require 2

integrations, that is
<z <2 [§1> ) Y(t) ] -5 | (49)

and 24 initdl conditions, the additional twelve are conditions on

initial velocities, since

> = v (x>
and '
Y= v(y)

hence
T =<7 [%<x)> ) ] | (50)
The acceleration vector x in the moving basis <7 oy (43) 1s |

oG +2<5 D <G> (1)

By (32)

<5 =<5 v(y) - (5e)
and '

<G =< viy) +<5 Viy) (53)
or

<G-SGlrwmwn ] | (4)

16



Using (52) and (53) in (50)

=<5 {xY> +2 V(y) ‘> + [V‘('y) + e(y)] x’>} . (55)
also

3 =2 - > (56)

vhereimy be considered the driving vector (specific force in mechanics),

hence

;»+2V(y) ;:r>+(v=+":) xY>-auy> (57)

Equation (57) is a second-order matrix differential equation linear in

the vector variable xy> and its derivatives, that is

P+ aelt) D+ M) D = > (58)

vhere in general the vector a> is a non-linear function of x> and

x> , that is

a> =a (x> , x>)> (59)
depending on the nature of a> .

It has been observed that we need 2h -integrations for the systems
undex; consideration. Six .integrations are required for (58), however,
the position and the velocity coefficient matrices A; and Ap must de
determined. Observe that on.e véctor x requires six integrators and that

the system of three vectors <§ will require 18 more integrations.

17



By equation (5k4)

<G <5 [V’(y) + G(y)] <3 E | (60)

that is

(Yl: Y2s Ya) (hl.: Ha: he) ‘ (61)
and the three "ariving" vectors <A have coordinates in the < 3 basis as
<E-<5r . (62)

Thus, if the matrix H is known the first order non-linear matrix
equation can be mechanized, that is

U(y) + v3(y) = E . | (63)

Iquation (63) requires nine integrations and nine initial conditions.
Equation (27) provides the other nine integrations, that is

Y=YV . (64)

The system of veoctor and matrix differential omtiom is

P> 2 D + [V'(v) + V.I(y)] D> - o>
6 integrators

V() + () =B (65)
9 integrators

Y(£) + YV = [0] |
9 integrators

18



If the constraints are imposed on the basis <§, that they are
orthonormal, that is, that

My 22> <5 =1 =[7,7)] )

then the symmetric matrix contains six independent conditions to be

satisfied. These conditions are

Yi¥y =1 1 =1,2,3 | (671)
vhich is three conditions, and

-3;1';3 =0 14 (68)
since

yi¥y =Yy (69)

the six off-diagonal conditions are redundant because of symmetry, that
is only three independent conditions.

From the above discussior, it is clear that the three vectors <'i :
with the constraint (66) are completely specified by three independent
coordinates instead of nine, that is the nine elements of the matrix Y

are functions of only three variables q> , hence

<7 <TY (a, 9 ) - (70)

It is well known that when f is also op O.N basis, or

Mpp = I (1)

P - Y (12)

19



hence

O <Fot MY . ()
By (66) and (71) |

Iuxy | :‘ (74)
hence

R
Y/ Y

and Y is said to be an orthogonal matrix.
The theory of Euler angles and relations to O.N bases is well known, that is

<7 =<CF m(93) M50 My (02) =<B(O>)

vhere ¢; are Ruler angles and Ni, "J’ My are rotation matrices.
It vill now be shown that the matrix V (y) of (51) is skew-symmetric.
Consider

7> <5 -1
and differentiating
D <G+ <5 = 0]

hence

D <G=-D-<5 (75)

20



Transposing (51)

v D (76)
projecting (76) ont~ <3, that is

2> Farliy) TG Vi) (T7)
and projecting (51) onto ¥ > hai tr

7> <5 =) (78)
using (77) and (78) in (75)

Vy) =~ v(y)

or

V(y) = - v/(y) (19)

hence the matrix V is skew-symmetric. Define its elements as

Vel-wg O w (80)

Wy -y 0

The relationship to Buler angles is given in reference kq..\

The matrix equation (63) becomes

0 g -wp -(—we" + W ) nep i 81)
e 0 wm| +| wwe  A-at+ «u‘) wasy «H
w -y O thug s w?® + m‘)

\
hou §



Equating the indicated elements of Eguation (81)

@ + W wp:= hes
Wz + Wg Wy = hgy : (&)
aS.*“J.ﬂe'hm

Equation (82) may be put into matrix form as

O w O b)i hos %
w>+ | w0 0flw | = | hey (3)
0 wp 0/ \ws hyg

The above non-linear transformation matrix i1s singular (non-invertible)

and is not unique, for example

Ws We [0 O w2 w )
wguwy | = 0 0 Wy W2 (84)
W W 0 w 0/ \w |

Observe that the transformation metrix of Equation (83) is e function
of Wy and Wy whereas the matrix of (84) is a function of w; and wp.
If we make (83) 1ook like a vector in the <§ space

G > +G T (D) > =<F foas
hay

hi2



then the vector components are

hgs = ¥ahe
hay = ¥a'hy
hy2 = ¥1-Hh2
and
Bl . A -
T 2G> =< [Fols
ya'hy
Y1°
—— AU U .
ﬁ s\N1vey Bs +<Ya Ys)’ b *(Vsn ‘hg
Clearly (63) requires only three integrations rather than nine as before.
Hence the system (65) reduces to 18 integrators. However, these are not
linearly independent differential equations as is knpwn, only twelve are

linearly independent. Iet us find the redundant ones.
Consider Equation (64), that is

v(D)=Yly

Equating the three unique elements of V in (85) to the right hand

matrix product yields

Wy =W 0>;>)
wmu(>O) (85)
“s = s 0>.0>>

23



The relations (85) are well known to imply

u> =T (>) 0>
vhere T (§>) 1s invertible so long as the second angle is not 90°, that is
STl . (86)

One can now use three integrations to obtain 0> and then generate

the trigonometric relations of the matrix Y since

Y=Y (D)

The constrained system now has twelve miegrations

’;7>+av(o>);>+(§(u)+v=),§_,> R
S+ P) D 5> (87)
O =110 | -

The above system of equations looks like the standard six degree of

freedom rigid-body dynamics. Clearly twelve integrations are required.
The transfer-matrix flow diegram of the system (87) is shown in

Figure (1).

2k



2v(w)

\7(0) +

-
|
‘1‘(u> )

FIGURE (1) SIX DEGREES OF FREEDOM SYSTEM
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Section IV, The Trajectory of a Vector X and two Arbitrary Time-Varying
" Bases <§ and <8 Inte tions). - -

In aerospace vehicle math-modelling one must consider many time

verying bases. This section congiders the system of vectors
(‘i: <y: <;> | (1)
and the relations

3 <t >G> <D @

vhere
<z-fz ()
or by
{ialGrie=lor (4)
Zay® | | | (5)

By analogy with (II-60)

%< [+ v | -<e ww) ©)



The system equations are by (II-65) (II-17) and 5

D> +2 v(y) I+ E‘(y) +_§(:r)} D> - >

6 integrators

V@y) + V3(y) = B(y)
9 integrators

V(z) + V2(z) = B(z)

9 integrators
T+V(y) T-T V() = (0] Q)
9 integrators
Y=Y v(y)
9 integrators

ﬁgebraic Relations

Z=sYT

xf> =Y xy>

and
x‘) . !7>

The above system requires 42 integrations plus the indicated algebraic

manipulations. The system i1s not unigue, that is one oould obtain many other

math models of the same dynamical systes. For example, consider
<-z' -<-y' T

27



and

GG
<$ "<.}: T+ 2<y T +<§ T -<z H(z)

by (II-3) and (1I-60)

<‘;‘ <5 [?r(y) . Y‘(y)] 1 +2<F vy) 2 +<5 r

and

or

T2V T+ [i-(y) P v’(y)] T e Hz) . (8)
Hence the system is defined by

> +2 vy) I+ l_V(y) + V'(y)J x’> J>
6 integrators
Vy) + ¥3(y) = (y)
. _ 9 integrators -
Ty) +2 V) T+ [9 + V'(y)]: ? = (0] (9)
18 integrators
Y =Y V(y)
9 integrators
Z=YT ' '

When the two moving bases < and <& are each orthonormal bases and
the transformation matrix T is a function of only three paremeters - namely
the Buler angles orienting the two bases then one reduces the system (9)
to a system of 9 degrees of freedom or 18 intomtiénﬁ. The details of

28



the derivation are not presented in this paper. The classical approach
to this case introduces such "poor" notions as "pseudo vector" or axial
vectors and relations like

U =gy +uy

vhere the “"axial" sngular velocity vectors W, and 75, are "inertial angular
velocities" and Wyy 18 the relative angular velodity vector.
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